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ABSTRACT

Lewis acid activated donor−acceptor cyclopropanes react with aliphatic, aromatic, and r,â-unsaturated nitriles in a novel cascade [3 + 2]
dipolar cycloaddition, dehydration, and tautomerization sequence to afford pyrroles in moderate to excellent overall yield. This cost-effective
and regiospecific method is ideally suited for the preparation of combinatorial libraries.

Pyrroles, important heterocycles that occur in porphyrins,1

pigments,2 and other natural products,3 have found applica-
tions in materials science4 and are common components in
molecular recognition and self-assembly ensembles.5-7 There
are dozens of reported pyrrole syntheses, some of the most
reliable of which date from the 19th century, such as the
Hantzsch8 and Paal-Knoor9 procedures.10,11 These classic
condensation reactions between activated methylenes and

amino ketones can be limited by their efficiency, functional
group compatibility, regiospecificity, or the variety of substit-
uents that can be introduced around the pyrrole. More recent
pyrrole syntheses typically showcase special methodology
or excel at accessing one substitution motif, but a universal
strategy for efficiently preparing all combinations of sub-
stituted pyrroles from easily handled materials is lacking.12

Recently, we reported the first formal [3+ 2] cycload-
dition between nitriles and donor-acceptor (DA) cyclopro-
panes to afford 3,4-dihydro-2H-pyrroles.13,14 Cycloaddition
reactions between DA-cyclopropanes and other kinds of
dipolarophiles are known,15,16 but the novelty and the clear
synthetic potential of the nitrile cycloaddition prompted us
to explore extending the strategy to include additional classes
of DA-cyclopropanes. However, all attempted nitrile cy-
cloaddition reactions with cyclopropanes other than those
prepared by intramolecular cyclopropanation failed to in-
corporate nitrile,17 and only the rearrangement products3
were obtained (Scheme 1).

We speculated that a solvent capable of sufficiently
stabilizing the intermediate oxocarbenium ion might funnel
the reaction pathway back into the cycloaddition manifold.
In this regard, we found that the use of nitromethane or
nitroethane as solvent at low temperature (-45 to -30 °C)
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was critical to suppress the elimination pathway. Herein we
report a new and efficient synthesis of di-, tri-, and tetra-
substituted pyrroles from DA-cyclopropanes by a domino
cycloaddition, dehydration, and tautomerization strategy
(Scheme 2).18

For our initial studies on the pyrrole synthesis we chose
as a model substrate the unsubstituted donor-acceptor
cyclopropane2a (Table 1). Trimethylsilyl trifluoromethane-

sulfonate emerged as an ideal Lewis acid for cyclopropane
activation, and addition of Me3SiOTf to a solution of2a in
acetonitrile gave the pyrrole in 80% isolated yield (entry 1,
yields based on cyclopropane).19 The inclusion of other sol-
vents generally gave lower yields (e.g., 73% in nitrometh-
ane), but practical considerations required the use of solvent
when most other nitriles were employed. The standard
reaction conditions20 for other nitriles were to add 1 equiv
of Me3SiOTf to a solution of cyclopropane and 10 equiv of
nitrile in either nitromethane or nitroethane solvent. Buty-
ronitrile gave a yield similar to that obtained with acetonitrile
(entry 2, 77%), and both aromatic (entries 3 and 4) andR,â-
unsaturated nitriles (entries 5-7) participate in the reaction.
No products from reaction across the double bond of the
unsaturated nitriles were detected.

The next examples in Table 2 illustrate the power of the
method to install alkyl groups selectively at either or both
of the C(4) and C(5) positions without formation of con-
stitutional isomers, which can plague traditional condensation
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Table 1. Pyrroles from DA Cyclopropane Nitrile
Cycloadditions
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methods. In entries 1-9, various nitriles are shown to react
with pyran and furan derived cyclopropanes, affording pyr-
roles with functionalized side chains at C(4). Introduction
of an alkyl group at C(5) resulted in lower yields for entries
8 and 9, but fortunately reaction efficiency was restored when
unnecessary ring strain in the starting materials was avoided
(entries 10-14). In entries 15 and 16, C(5) methyl pyrroles
were obtained in 55-62% isolated yield without substitution
at C(4). Placing the alkoxy leaving group at the bridgehead
of the [3.1.0] bicyclic system permitted the synthesis of
4,5,6,7-tetrahydroindoles (entries 17 and 18). These are useful
synthetic intermediates in natural product and pharmaceutical
chemistry and can be readily oxidized to the indole.21,22The
results in Table 2 reveal the diverse substitution permutations
that are possible with this methodology. Another advantage
is that the stereochemistry of the cyclopropane appears to
have no effect on reaction efficiency. For example, in entries
3, 10, and 13, identical yields were obtained whether
mixtures or single stereoisomers of cyclopropanes were used.

Table 3 summarizes the results from cycloaddition reac-
tions with more densely functionalized cyclopropanes that
were prepared from glycals or related structures. These
reactions illustrate that the pyrrole synthesis is compatible
with a variety of protective groups, including di-tert-butyl
silylenes (entries 1-4), benzyl ethers (entries 4 and 5), and
acetates (entry 6).23 The considerable substrate and functional
group compatibility will be an important asset when prepar-
ing pyrroles of increased complexity.

In conclusion, the domino donor-acceptor cyclopropane
nitrile [3 + 2] cycloaddition, dehydration, and tautomeriza-
tion strategy is a powerful and efficient new method for

pyrrole synthesis that allows precise control over the instal-
lation of substituents at three positions around the pyrrole.
The method is characterized by operational simplicity,
substrate generality, and mild reaction conditions. The
material costs associated with this procedure are generally
less than other modern strategies, and the ease of product
purification simplifies large-scale reactions. Given the com-
patibility of this method with various nitrile classes and the
great number of nitriles that are commercially available (over
4000), it is likely that this work will find useful application
in diversity-oriented synthesis.
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a Acidic workup (1 M HCl). b ArCN ) p-MeOC6H4CN.
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